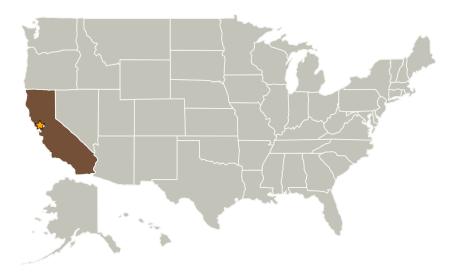
PhoneSat

Completed Technology Project (2011 - 2014)


Project Introduction

The PhoneSat series of missions demonstrated the use of a commercial mobile phone as an on-board computer for CubeSats. The project also demonstrated the practicality of using off-the-shelf electronics products in spaceflight applications.

Anticipated Benefits

The PhoneSat series of missions demonstrated a set of new options for costeffective space or Earth science, exploration, or space operations missions, including space weather observation networks or other small satellite constellations, clusters, or swarms.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Ames Research Center(ARC)	Lead	NASA	Moffett Field,
	Organization	Center	California

Primary U.S. Work Locations

California

PhoneSat

Table of Contents

Project Introduction	
Anticipated Benefits	
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Transitions	
Project Website:	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	
Target Destination	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Ames Research Center (ARC)

Responsible Program:

Small Spacecraft Technology

Small Spacecraft Technology

PhoneSat

Completed Technology Project (2011 - 2014)

Project Transitions

November 2011: Project Start

September 2014: Closed out

Closeout Summary: PhoneSats 1.0 and 2.0 demonstrated that commercially a vailable reaction wheels and custom torque coils can work for a low-cost attitude determine and control system (ADCS), and that "homebuilt" solar arrays could c harge the batteries on orbit. PhoneSat 2.4 demonstrated that low-cost COTS AD CS works in space and that a commercial cellphone processor works as an S-ba nd command and telemetry modem. PhoneSat 2.5 verified a commercial cellpho ne processor can support space-based communications systems and also demon strated transmission of images to a ground station.

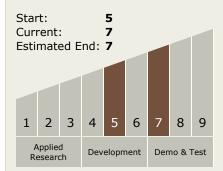
Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

Project Management

Program Director:

Christopher E Baker


Program Manager:

Roger Hunter

Principal Investigator:

Deborah M Westley Atkins

Technology Maturity (TRL)

Technology Areas

Primary:

- TX02 Flight Computing and **Avionics**
 - └ TX02.1 Avionics Component Technologies

Target Destination Earth

